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Figure 1: Left: simply replacing each quad by its cluster mean shape, the SEASHELL surface breaks; middle: The K-set tilable surface ap-
proximates the input surface with instances of 60 distinct quad shapes; we shade different groups with random colors; right: an architectural
design of a museum building using a K-set tilable surface on SEASHELL with K = 60.

Abstract
This paper introduces a method for optimizing the tiles of a quad-
mesh. Given a quad-based surface, the goal is to generate a set
of K quads whose instances can produce a tiled surface that ap-
proximates the input surface. A solution to the problem is a K-set
tilable surface, which can lead to an effective cost reduction in the
physical construction of the given surface. Rather than molding
lots of different building blocks, a K-set tilable surface requires the
construction of K prefabricated components only. To realize the
K-set tilable surface, we use a cluster-optimize approach. First,
we iteratively cluster and analyze: clusters of similar shapes are
merged, while edge connections between the K quads on the tar-
get surface are analyzed to learn the induced flexibility of the K-set
tilable surface. Then, we apply a non-linear optimization model
with constraints that maintain the K quads connections and shapes,
and show how quad-based surfaces are optimized into K-set tilable
surfaces. Our algorithm is demonstrated on various surfaces, in-
cluding some that mimic the exteriors of certain renowned building
landmarks.

Keywords: Computer-aided-geometric design, architectural ge-
ometry, computational differential geometry, freeform surface,
tiling.

1 Introduction

Computer-aided-geometric design (CAGD) systems offer powerful
solutions with accurate engineering constraints in the design and
manufacturing of wide ranges of 3D geometric models. One emerg-
ing area is modern architecture, where the exteriors of a fast grow-
ing number of specially-designed building landmarks were using
CAGD methods [Pottmann et al. 2007a-b]. These buildings typi-

cally come with noticeable aesthetic-looking curved surfaces, such
as those in Figure 2. However, compared to the immense research
effort that has been devoted to the design of professional CAD sys-
tems, until recently relatively little attention has been paid to geo-
metric techniques to improve the quality and efficiency in architec-
tural surface modeling.

In modern architecture, prefabricated components, or semi-finished
parts, are used to assemble walls, panels, and ceilings [Blanc et al.
1993]. These prefabricated components are pre-built offsite, trans-
ported to the construction site, and further assembled onsite. The
use of prefabricated components has a number of clear advantages.
Its applicability to model curved building exteriors is, however,
limited by the distinct panel shapes that curved surfaces require.
Undoubtedly, up to basic symmetries, typically each prefabricated
panel has a unique shape on the curved surface.

Given a quad-based surface as an input, the goal of our work is to
generate a K-set tilable surface (or KT-surface) with a prescribed
K while maintaining the KT-surface close to the input surface. Be-
yond being close to the surface, we expect the KT-surface to have
similar geometric characteristics, such as the surface curvature, as
in the input surface, and thus taking the square faces of a voxeliza-
tion of surface is an invalid solution. Note, however, that we do
not require the quads to be planar. The main contribution of this
work is two-fold. First, the introduction of the notion of K-set
tilable surfaces. Then, we present a solution to the problem based
on non-linear optimization. We show the construction of various
KT-surfaces that are quantitatively close to the input surfaces.

Overview of our approach. To generate a K-set of tiles, we take
an optimization approach that consists of iterative clustering and

Figure 2: Buildings with curved exteriors: Swiss Re Tower in Lon-
don, De Beers Ginza in Japan, and Turning Torso in Sweden.
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Figure 3: Overview of our approach over a MONKEY SADDLE surface: We iteratively cluster and analyze: For this example we (i) cluster
the quads into 24 clusters, and (ii) analyze the edge connections to detect 33 distinct edge lengths in the specific clustering configuration.
Then (iii) we optimize the given surface into a KT-surface.

analysis (see Figure 3): after clustering the quads, we generate K
representatives and learn the flexibility from the clustering by an-
alyzing the relations between the clusters and the quad-mesh. The
surface vertices are then optimized so that all quads agree with the
representatives while remaining close to the given surface. We as-
sume that the given surface is tiled with quads only, possibly ini-
tially of a unique shape. To reduce the number of distinct quad
shapes to K, one can first cluster together the surface quads by
their shape similarity, using some rotation-invariant similarity mea-
sures between quads, and replace each quad with a representative
quad from the associated cluster. In the following, the representa-
tive quads are denoted by S-quads.

Simply taking the mean shape of quads in a cluster as the shape
of an S-quad and replacing the surface quads by their respective S-
quads will break the surface, because adjacent quads will no longer
agree on their common edges, see Figure 4. Clearly, the geometry
of S-quads cannot be determined merely from the clusters alone.
The S-quad shapes must respect also the spatial constraints among
their instances over the tiled surface to guarantee their proper con-
nectivity. In addition, one also has to ensure the shape consistency
of the instances so that they have compatible lengths in diagonals
and edges, as well as consistent signed volume occupied by the
quad instances. Since we consider non-planar quads, the vertex ar-
rangement of quads can affect the shape uniqueness in addition to
the lengths. Lastly, one also needs to ensure that the surface tiled
with the quads instances approximates the input surface.

Figure 4: Left: original surface; middle: simply replacing surface
quads with S-quads; right: optimized S-quads tiled on KT-surface.

Our optimization model solves for the vertex coordinates with var-
ious constraints that respect the edge connectivity and shape con-
sistency among the S-quads instances, as well as the surface ap-
proximation. Consequently, we can iteratively optimize the input
surfaces into K-set tilable surfaces.

2 Related works

Discrete differential geometry (DDG) [Bobenko and Suris 2008]
is an emerging research area where differential geometry interacts
with discrete geometry. With the discrete equivalences of the ge-
ometric notions and methods in classical differential geometry, re-
cently researchers have explored the potential of DDG for computer
graphics modeling and applications. DDG allows formulating and
optimizing various geometric properties in a discrete manner. Some
recent examples are the construction of various models [Mitani and
Suzuki 2004; Massarwi et al. 2007; Shatz et al. 2006; Mori and
Igarashi 2007; Rose et al. 2007]. Another example where a model
is analyzed and then optimized is the work of Gal et al. [2009].
They introduce an editing mechanism that analyzes and edits man-
made models by learning the inter-relation among the model parts.
Our optimization tends to capitalize on the inherent symmetry of
the given shape [Xu et al. 2009]. In that sense, a related work is the
model symmetrization of Mitra et al. [2007].

The optimization method that we present here is applied on quad-
meshes. Quad-meshes draw more attention recently since they are
attractive for modeling surfaces: the quad elements can be nicely
aligned with the principal directions of the surface. The work of
Daniels et al. [2008] simplifies quad-meshes. Our work also sim-
plifies quad-meshes, but not in terms of the surface quad count.

One recent CAGD area emerged at the borders between discrete
differential geometry and architectural engineering is architectural
geometry. This area is primarily driven by the increasing demands
in designing and modeling freeform surfaces. Motivated by practi-
cal architectural need, Liu et al. [2006] introduced conical meshes,
which have planar faces and yet possess offset meshes at constant
face-to-face distance from the base mesh. They developed an op-
timization model to convert quad-meshes into canonical meshes
and combined Catmull-Clark subdivision with their approach. Yan
et al. [2006] proposed a variational approach to extract general
quadric surfaces from mesh surfaces; quadric proxies are progres-
sively inserted (or merged) against an error threshold to improve
the surface approximation. Building upon the concept of paral-
lel meshes, Pottmann et al. [2007b] developed methods to opti-
mize meshes with offset properties relevant to architectural model-
ing. Later, Pottmann et al. [2008] systematically investigated semi-
discrete surfaces and presented algorithms to optimize freeform sur-
faces into developable strips, leading to elegant solutions for sur-
face panelization. Kilian et al. [2008] analyzed developable sur-
faces with curved creases and applied them to assorted architecture
and industrial designs. More recently, Schiftner et al. [2009] intro-
duced circle-packing meshes, where the incircles on neighboring
triangle faces touch one another and the induced spheres centered
at each vertex also form a packing.

Concurrent to our work, there are two similar pieces of independent
research work that share the same general motivation with us. All
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aim at optimizing the number of tile shapes required to construct a
surface. The approach of Singh and Scott Schaefer [2010] is simi-
lar to ours, but their tiles are triangles. They search for a clustering
of triangles that can be optimized to approximate the given model.
Starting from a single cluster, they keep adding clusters until the
approximation is sufficient. The work of Eigensatz et al. [2010]
considers molds and panels rather than congruent tiles. Their fo-
cus is on the reusability of molds in fabricating panels for forming
globally coherent surfaces.

3 Clustering

The purpose of the clustering phase is to group quads with similar
shapes and define an initial set of representative S-quads. Then the
shapes of these S-quads are optimized, so instances of them can
then tile the KT-surface. First, we define the metric for computing
shape dissimilarity between two quads p and q, whose vertices are
pi and qi, respectively:

s(p, q) = min
j

Σi||qi − Tj(pi)|| for i ∈ [1, 4] ,

where Tj is a rigid body transformation involving only arbitrary
translation and rotation. This definition searches for the best pos-
sible registration between the two quads among the eight different
ways to correspond vertices from the two quads. Subsequently, we
can construct an affinity matrix of quads, see Figure 5.

Figure 5: Affinity matrices (linearly color-mapped) for MONKEY
SADDLE (left) and SEASHELL (right) surfaces.

Initial Clustering. The clusters are formed by a series of cluster
merge, where at each step two clusters are merged until we are left
with exactly K clusters. We start off with a large number of small
clusters created simply by grouping together all quads with strong
similarity defined by a prescribed threshold. The result of this step
yields an initial set of N clusters. Once a set of clusters, or say a
clustering configuration, is formed, the mean shape of each cluster
defines an initial S-quad. The S-quad instances are now placed over
the surface to replace the original quads. Since the quads have eight
possible orientations, each S-quad instance is tagged with the ori-
entation that maximizes its similarity with the quad tile it replaces.

To continue the discussion, the weight of a cluster Ci is defined as
the total sum of all pairwise dissimilarity among its quads, and is
denoted as S(Ci). The cost of merging two clusters Ci and Cj

is S(Ci ∪ Cj) − S(Ci) − S(Cj) and the weight of a clustering
configuration is the sum of weight of the individual cluster inside.

However, the clustering configuration with the lowest weight is not
necessarily the one that will incur the least constraints on the con-
sequent KT-surface. The quality of a configuration is defined also
by the degree of flexibility it imposes on the KT-surface. The “flex-
ibility” is learnt by analyzing the relations between the clusters and
the quad-mesh, and the degree of freedom the S-quads definition
imposes on the mesh edges. For that we next analyze the edge con-
nections and flexibility.

Analyzing the edge connections. Recall that the S-quads are
templates of quads and their instances over the resultant KT-surface
must have matched length along their shared edges. We thus exam-
ine the edge connections between S-quads over all edges on the
input surface and formulate constraints for the optimization of S-
quad shapes. To this end, constraints of individual edges are aggre-
gated to form the edge connection constraints with the assistance
of an edge sharing graph. Basically, it is an undirected graph, say
G = (V, E), where each vertex in V corresponds to one of the
edges of the k S-quads, i.e., |V | = 4k. Two vertices in G are con-
nected if their associated S-quad edges (for some S-quad instances)
share an edge on the given surface.

Figure 6: Given four clusters of quads on MONKEY SADDLE (left),
we analyze the edge sharing conditions for S-quad instances by an
edge sharing graph (middle). Edges marked with the same color
should have matched edge length on the KT-surface (right).

Taking the 4-by-4 MONKEY SADDLE surface in Figure 6 as an
example. The connections (edge sharing) between instances of S-
quads on the surface define the connections between related vertices
in the edge sharing graph. Since the same S-quad may have more
than one instance over the surface, instances of the same S-quad
may sometimes be placed next to one another, and hence, some
vertices in G may connect to vertices of the same S-quad. How-
ever, we can ignore edges that loop back to the same vertex in G
since loops do not pose any constraint.

Based on the edge sharing graph, we define the edge connection
constraint by searching over connected components in the edge
sharing graph. Each disjoint subgraph, i.e., a connected component,
in the graph is a group of S-quad edges that should have compatible
edge length on the resultant KT-surface.

Following the example shown in Figure 6, the edge sharing graph
consists of seven disjoint subgraphs, and hence there are seven dis-
tinct edge lengths in the KT-surface. In Figure 6, the graph vertices
belonging to the same subgraph are labeled with the same color and
these colors are applied to visualize the edge connection constraints
over the surface. During the optimization, edges of the same color
are constrained to have compatible length.

The larger the number of disjoint subgraphs, the higher the num-
ber of distinct edge lengths exist on the KT-surface. This number
defines the degree of freedom in modeling a KT-surface. In other
words, the number indicates the flexibility of a KT-surface. Now,
the degree of flexibility can be directly determined by the cluster-
ing configuration; it serves as a useful indicator on the quality of
the clustering, and is used in searching for the best configuration.
In practice, we found that for some clustering configurations with a
relatively large number of clusters, their degrees of flexibility may
still be low due to poor arrangement of S-quads.

Cluster Merge. Recall that the clusters are formed by a series of
merge operations. Each series of such binary merges yields a clus-
tering configuration that is associated not only with cost, but also
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with a degree of flexibility learnt from its edge sharing graph. Ide-
ally, we would like to exhaustively test all possible series, and learn
which clustering configuration yields the best KT-surface, but since
our problem is intrinsically similar to the NP-hard optimization
problem Minimum K-clustering Sum [Ausiello et al. 1999], this,
however, is not computationally feasible and we employ the fol-
lowing heuristics: We sort all the initial N clusters by their weights
S(C1) ≤ S(C2) ≤ S(C3) ≤ ... ≤ S(CN ). Then, we subse-
quently pick two clusters from the front of the list and compute the
merging cost as well as the change in degree of flexibility. Mean-
while, we keep track of 10 candidate configurations1 and the lowest
cost among them serves as an upper bound for the merging cost.
Since the weight of the merged cluster is always larger than the
sum of weights of the two individual clusters being merged, this
upper bound is used for an early termination of an otherwise ex-
haustive search. In addition, we penalize the merging cost (with a
user-specified parameter) if the merge results in severe reduction in
the degree of flexibility. Notice also that upon each binary merge,
we can amend the edge sharing graph rather than re-building it in
order to learn the degree of flexibility. In the spirit of genetic algo-
rithms for searching a very large space, the resultant ten candidate
configurations are later used as the seed configurations to generate
the next ten candidates when we further reduce K. The different
series of binary merges yield candidate clustering configurations,
or in fact, sets of S-quads.

4 Optimization

The KT-surface geometry is generated by optimizing the vi,j ver-
tices positions, under the constraints defined by the edge sharing
graph. The vertices positions aim to remain closer to the original
surface, expressed by the Fd term, which measures the distances
between the corresponding vertices of KT-surface and input sur-
face:

Fd :=
∑
i,j

‖vi,j − v0
i,j‖2,

where v0
i,j is the original position of vertex vi,j .

To preserve the surface smoothness, we employ the fairness term
Ff and apply it to vertices that are not on sharp features, such as
corners and crest lines. Based on [Liu et al. 2006], we use the
following fairness term on interior vertices:

Ff :=
∑
i,j

fair(vi,j)

fair(vi,j) :=

{ ‖vi,j − 1
m

∑m
(neighbors of vi,j)‖2 if m 6= 4

‖vi+1,j − 2vi,j + vi−1,j‖2

+ ‖vi,j+1 − 2vi,j + vi,j−1‖2 if m = 4,

where m is the valence of vi,j . For vertices along the surface
boundaries (excluding corner points on boundary), we use:

fair(vi,j) :=
∑
i,j

‖vi+1,j − 2vi,j + vi−1,j ||2 ,

where vi+1,j and vi−1,j are neighbors of vi,j along the boundary.
Note that the fairness term in Liu’s method is a discrete bending
energy. Minimizing this energy is equivalent to minimizing the sum
of squared principal curvatures, i.e., k2

1 + k2
2 , while minimizing the

squared Laplacian is equivalent to minimizing the square of mean
curvature, i.e., (k1 + k2)

2. These terms are close, but we found the
bending energy more effective for vertices of valence four, which
predominate the quad-meshes that were experimented with.

1The number of candidate configurations is controllable as a parameter,
and a larger number, such as 50, is needed for surfaces with more quads.

For each subgraph, say Gs ∈ G, we extract all its associated edges
on the surface: e0, e1, ..., en−1, and apply the following edge con-
nection term to enforce compatible edge lengths, so that we can
connect instances of S-quads on the KT-surface:

Fe :=
∑
Gs

n−1∑
i=0

(
||ei||2−||ei′ ||2

)2

, where i′ = (i+1) modulus n .

In addition to edge lengths, we further need to constrain the diag-
onal lengths to enforce compatible shape for instances of S-quads.
Given q0, q1, ..., qn−1 as the instances of a given S-quad, we de-
fine ac(qi) and bd(qi) as the two diagonals of qi, corresponding to
the diagonals of the S-quad. The following diagonal term enforces
compatible diagonal lengths among the instances:

Fa :=
∑
Gs

n−1∑
i=0

[(
||ac(qi)||2 − ||ac(qi′)||2

)2

+
(
||bd(qi)||2 − ||bd(qi′)||2

)2

]
.

Using the diagonal term alone is insufficient to guarantee compati-
ble shape among the instances of a given S-quad. Since we consider
non-planar quads, which act like tetrahedrons in 3-space, instances
in the same cluster could be optimized to be mirror of each other,
but yet still having compatible edge and diagonal lengths. Since
mirror reflection is not rigid body transform, we cannot tile them
with the same S-quad. Hence, the following orientation term is in-
troduced to enforce compatible orientation for instances in the same
cluster. This is expressed by the signed volume (determinant) of 4-
vertices in 3-space:

Fo :=
∑
Gs

n−1∑
i=0

(
V (qi) − V (qi′)

)2
,

where V (qi) denotes the signed volume of qi.

The following objective function summarizes all the above terms:

min f := µ1Fd + µ2Ff + µ3Fe + µ4Fa + µ5Fo ,

where µi’s are user-specified weighs. Since we regard Fe, Fa,
and Fo as hard constraints whereas Fd and Ff as soft constraints,
we set in our current implementation µ3 = µ4 = µ5 = 1,
and the typical values of µ1 and µ2 to be 0.0001. Compared to
the edge/diagonal/orientation constraints, the fairness and distance
contribute very little to the objective function, and therefore, these
terms can hardly converge to zero. We use the Conjugate Gradient
method (which implements the Polak-Ribiere minimization) from
the book Numerical Recipe to solve the above unconstrained non-
linear programming.

5 Implementation and Results

Clustering Enhancement. Recall that Minimum K-clustering Sum
is an NP-hard optimization problem [Ausiello et al. 1999], we use
a number of heuristics to further improve and control the clustering
quality: First, we allow interactively merging and breaking clus-
ters. After each update, our system can amend the edge sharing
graph and instantly feedback the degree of flexibility and edge con-
nection constraints. Two examples, which were edited, are TOWER
(K = 9) and SEASHELL (K = 21): the approximation errors of
their resultant KT-surfaces are 1.43 and 3.55, respectively; after
re-arranging the clusters, the approximation errors are reduced to
1.37 and 3.34, respectively, see Table 1. Another way is to enlarge
the size of candidate set in hierarchical clustering. The larger the
size is, the closer to an exhaustive search the process will be. In
addition, we also initiate an auto-merge that examines the cluster
pattern, i.e., the four subgraphs that the associated S-quad edges
belong to. If two clusters have exactly the same pattern, they can be
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Figure 7: Left: K-set DE BEERS GINZA (K = 27); middle: origi-
nal surface of SWISS RE TOWER; right: K-set SWISS RE TOWER
(K = 21). There is only a little visual degradation for smaller K.

merged without reducing the degree of flexibility. This can quickly
reduce K, particularly in symmetric surface regions. Lastly, we
find it useful to add also a clustering configuration defined by a
standard K-means clustering to enrich the candidate pool because
hierarchical clustering may be locked in a local minimum.
Results. From Figure 8 and Table 1, the general observation is
that the larger the K is, the better the KT-surface approximates the
original input is. When K decreases, we gradually lose flexibility
to retain geometric details in the KT-surface. Table 1 summarizes
the KT-surface properties; the columns (from left to right) are: K,
degree of flexibility, the terms in the objective function, and the
approximation error. For fair comparison, we uniformly scale the
surfaces into a unit cube and the terms in the objective function are
normalized by the number of vertices, edges, or faces, accordingly.
Two data models are particularly interesting. When K decreases,
the opening in the SEASHELL gradually shrinks, appearing like a
symmetrization process. For the MONKEY SADDLE, we gradually
lose the flexibility to represent the frontal curly part as it has mir-
rored left and right halves and its quads are highly curved, thus
limiting the clustering choices due to the orientation constraint, see
below for summarized symmetry conditions:
• TUNNEL: multiple rotation symmetry about its medial axe

and (one global and two local) reflection symmetry;
• TOWER: multiple rotation symmetry about its medial axe and

approximate reflection symmetry about its middle;
• DECOCUBE: multiple mirror-reflection / rotational symmetry;
• MONKEY SADDLE: mirror-reflection (left and right) and ro-

Table 1: Optimization results on surfaces shown in Figure 8.

tational symmetry (front and back);
• SEASHELL: one mirror-reflection symmetry;
• DE BEERS GINZA: no symmetry.

For TOWER, we found from our experiment that both hierarchical
and k-mean clustering can exploit approximate symmetry about its
horizontal plane in the middle, see the clustering pattern shown in
Figure 8. See also Figure 7 for the demonstration of KT-surfaces
as the building exteriors of DE BEERS GINZA and TOWER (that
mimicks Swiss Re Tower).

Limitations. (i) The input surface is assumed to be noiseless so that
the similarity metric can provide good initial clustering. (ii) Our op-
timization does not scale well. Currently we are limited to surfaces
of less than 1500 quads. A possible solution is to use quad simpli-
fications [Daniels et al. 2008], and another is to first segment the
surface and optimize it in parts. (iii) Constraining the quads to be
planar is a different and harder problem, and it was not considered
in this current work. (iv) For many models, we may not be suc-
cessful in reducing K to small number. Like in Figure 8, TOWER
gets severe distortions already with K = 9 tiles. If we push it
further down to K = 2, the TOWER degenerates and collapses
due to the non-uniform arrangement of quads around the tower tip.
Also when the quads have irregular shapes,
like in the TOWER, it becomes too ambigu-
ous to cluster them. However, for some mod-
els we succeeded to go down to K = 1, e.g.,
the DECOCUBE becomes cube-like while the
MONKEY SADDLE is completely flattened.

6 Conclusion

This paper presents a challenging problem in freeform surface mod-
eling, namely the K-set tilable surface. It allows us to closely ap-
proximate an input surface with instances of a small set of K quads.
This solution may contribute to an effective cost reduction in the
physical assembly of the given surface. In detail, we introduce the
edge sharing graph structure to analyze the edge connection con-
straints and also to learn the degree of flexibility from the clustering.
We further formulate constraints according to the S-quad tilability
and the surface approximation, and devise a non-linear optimiza-
tion model to progressively iterate the vertices positions to achieve
the construction of KT-surfaces. In the paper, we push K to be
particularly small. However, we believe that the advantage of the
technique is for designing surfaces with rather moderate K. We
also consider extending this technique to home-made assembly of
toys for recreational purposes.
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